光ファイバーセンサーを用いた空間分解能10cmでの温度計測技術を開発

ポイント
・「超高温設備の革新的オンライン監視システムの技術開発」をNEDOの委託業務で実施

・次世代火力発電プラントの配管や化学プラントの反応装置などの750℃以上の高温下における温度分布の監視技術を開発


概要
沖電気工業(株)、中国電力(株)、一般財団法人電力中央研究所(以下、電中研)は、次世代火力発電プラントや化学プラントなどの超高温設備の運用課題に着目した温度計測技術を開発した。伝熱管や反応装置など、精密かつ超高温となる設備の異常をリアルタイムに検出するため、750℃以上の環境下で動作し、空間分解能10cmで光ファイバーに沿った温度分布を計測可能とする次世代の技術である。これにより超高温設備の負荷変動時に生じる異常過熱をリアルタイムに解析することができ、装置の省エネ化や長寿命化に貢献するという。

この成果は、国立研究開発法人 新エネルギー・産業技術総合開発機構(以下、NEDO)の委託業務(JPNP14004)の結果得られたもの。

1. 背景
わが国で技術開発が進められている次世代火力発電プラント(注1)は、再生可能エネルギーの出力変動を調整する役割が期待されている。しかし、起動停止時や負荷変動時に生じやすい異常過熱により、伝熱管クリープ破断(注2)やエネルギーロスを引き起こす課題がある。また、化学プラントのような高温反応装置では、不均一な化学反応に起因するホットスポット(注3)の発現による安全性や効率、耐久性の低下が課題となっている。

しかしながら既存の高温用センサは、計測精度、空間分解能、耐久性を両立できず、超高温で稼動する産業設備の温度分布から異常過熱箇所をリアルタイムで把握することは困難だった。

2. 研究手法・成果の特徴
本研究では、750℃以上の高温下での安定的な計測を実現する光ファイバーコーティング技術と、この光ファイバーを使ったセンサ技術、10cmの分解能でリアルタイムでの温度分布計測を実現する光ファイバーセンサ用信号処理技術を開発した。さらに、ボイラー伝熱管への敷設方法を開発し、伝熱管の模擬環境としてプロパンバーナー燃焼ガス中に保持したSUS(注4)管の表面温度計測に適用することで、750℃での長時間使用と、最高950℃までの計測、さらに750~900℃の超高温において一般的な熱電対と同等の精度での温度計測が可能であることを実証した。

3. 将来の社会実装イメージ
NEDO委託業務(JPNP14004)には電中研、中国電力、OKI、北海道電力(株)、大阪府立大学(現:大阪公立大学)、非破壊検査株式会社が参画し、750℃以上の高温下での安定的な計測を実現する光ファイバーコーティング技術と、この光ファイバーを使ったセンサ技術、10cmの分解能でリアルタイムでの温度・ひずみ分布計測を実現する光ファイバーセンサ用信号処理技術、理想化陽解法FEM(注5)による従来比100倍以上の高速化で実構造のクリープ解析を可能にする技術の開発を行った。今後、上記の要素技術を組み合わせ、超高温下で動作する設備・機器をデジタルで完全に再現するデジタルツイン(注6)を実現していくとのこと。

超高温環境下で動作する大規模な産業システムのデジタルツインが実現することで、稼動しているシステムにおけるホットスポットの発現状況、溶接部分の応力分布といった重要な情報に、仮想空間上で容易にアクセスすることが可能になる。これらのデータから装置の余寿命を予測したり、データをフィードバックして装置の動作を制御したりすることが容易になるため、装置の省エネ化や長寿命化が期待できる。さらに、このフィードバック制御を短時間で繰り返すことで装置の余寿命の予測精度が飛躍的に向上することが期待できる。

・注1:次世代火力発電プラント
現状の発電方式に比べ発電効率が10%程度以上高い、将来の高効率の発電方式のプラントの総称である。具体的には、A-USC(先進超々臨界圧)、1700℃級GTCC(超高温ガスタービン複合発電)、GTFC(ガスタービン燃料電池複合発電)、IGFC(石炭ガス化燃料電池複合発電)、1700℃級IGCC(石炭ガス化複合発電)、水素ガスタービン発電プラント等であり、今後、世界中のプラントでこれらの発電方式に置き換えることができれば、発電効率を現状の平均35%から45%に向上でき、世界で22億トン/年(2015年の全世界CO2総排出量330億トンの6.6%)のCO2排出量削減が可能となる。
・注2:クリープ破断
クリープ(高温下において物体に一定の応力を加えると時間とともに変形していく現象)条件下で生じる破断のこと。
・注3:ホットスポット
超高温ボイラーの燃焼が不安定になると、伝熱管の表面が局所的に加熱されることがある。また化学プラントの高温反応装置も反応が局所で急激に進むことがあり、それらの高温集中エリアをホットスポットと呼ぶ。これが発生すると、エネルギーロスや安全性の低下を引き起こす。
・注4:SUS
鉄にクロムなどを合金したステンレス鋼の総称。耐食性、耐熱性に優れるSUS304が代表的である。
・注5:理想化陽解法FEM
大阪公立大学が開発した超高速シミュレーション手法。主に溶接解析用として産業用に広く使用されている。
・注6:デジタルツイン
実空間上にある物理情報(機器や設備の稼働状況、環境情報など)をリアルタイムで収集する一方、仮想空間上においてもシミュレーションを実施することで、未来の物理情報を予測する方法。

プレスリリースサイト(OKI):https://www.oki.com/jp/press/2022/05/z22013.html